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2010), conceptual frameworks have been developed where 
traits are considered key components of ecosystem processes 
and services (Hooper et   al. 2005, D í az et   al. 2007, 2011, 
Cadotte et   al. 2011, Lavorel 2013). 

 Functional properties of plant communities can be 
summarized by diff erent metrics related to the diversity or 
central tendency of functional traits values (Mouchet et   al. 
2010). In particular, the community weighted mean (CWM) 
trait value, i.e. the average trait value calculated as the sum 
of species trait values weighted by their relative abundance 
in the community (Garnier et   al. 2004, D í az et   al. 2007) 
is a promising approach to characterization of community 
functional properties in ways that are useful for quantifying 
ecosystem functioning (Garnier et   al. 2004, Ruiz-Jaen and 
Potvin 2011, Conti and D í az 2013, Dias et   al. 2013, Lavorel 
2013, Finegan et   al. 2015), plant community relationships 
to environmental variables (Shipley et   al. 2006, Swenson and 
Weiser 2010, Kleyer et   al. 2012, de Bello et   al. 2013, Siefert 
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 Understanding relationships between vegetation patterns 
and environmental characteristics is a central theme dating 
to the earliest studies of plant community ecology (Egerton 
2013). A shift in approaches to modelling vegetation and 
community composition along environmental gradients has 
occurred in recent decades, in which vegetation – environment 
relationships are studied using plant functional traits rather 
than species taxonomic identity alone (Keddy 1992, Wright 
et   al. 2005, Shipley et   al. 2006, Ordo ñ ez et   al. 2009, Swenson 
and Weiser 2010, Douma et   al. 2012, van Bodegom et   al. 
2012, Siefert et   al. 2013). Plant functional traits are defi ned 
as any morphological, physiological or phenological feature 
measurable at the individual level and infl uencing its per-
formance (Violle et   al. 2007). As a result, functional traits 
limit the range of environments in which plant species can 
grow and survive, thus constraining their spatial distribu-
tions and geographic ranges. Because functional traits are 
also strongly related to ecosystem functioning (de Bello et   al. 
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et   al. 2013, Fortunel et   al. 2014), forest temportal dynamics 
(van der Sande et   al. 2016) and shifts in plant community 
composition related to global change drivers (Dubuis et   al. 
2013, Mokany et   al. 2015). Functional traits may therefore 
be valuable for forecasting the response of plant communi-
ties to climate change. However, the question of how tropi-
cal forest functional characteristics will change as a result of 
climate change remains largely unresolved. 

 Evidence for climate change is unequivocal, with pro-
jected impacts on all global ecosystems (IPCC 2013). In the 
tropics, while trends vary locally, precipitation has generally 
increased over the last decade, with concomitant increases 
in the number of heavy precipitation and drought events 
(IPCC 2013). In Central America and northern South 
America, evidence shows a general warming trend over the 
1961 – 2003 period, with rainfall events intensifying due 
to a larger contribution of wet and very wet days to total 
annual rainfall (Aguilar et   al. 2005). However, Central 
America is expected to become warmer and undergo pre-
cipitation changes in future climate scenarios (Neelin et   al. 
2006) resulting in decreased water availability for vegetation 
(Imbach et   al. 2012). Th e magnitude of climate change in 
this region is expected to be larger than in any other tropi-
cal region (Giorgi 2006), moving ecosystems out of their 
historical temperature range relatively sooner than at higher 
latitudes (Hawkins and Sutton 2012, Mora et   al. 2013). 

 Climate change will cause major changes in ecosys-
tem structure and function (IPCC 2013). In particular, 
shifts in plant community assemblages, ecological interac-
tions among species and in species geographical ranges are 
expected to bring predominantly negative consequences for 
biodiversity and ecosystem goods and services (IPCC 2013). 
In the Amazon Basin it is suggested that projected climatic 
change will favor plan-growth strategies associated with the 
acquisitive end on the leaf economic spectrum (Reu et   al. 
2011). In Costa Rica it has been shown that tree growth 
is aff ected by dry-season conditions and variation in mean 
annual nighttime temperatures (Clark et   al. 2010). Recent 
changes in relative abundances of tree species of diff erent 
temperature tolerances along an altitudinal transect also in 
Costa Rica are consistent with eff ects of warming, indicating 
that individuals of many tropical tree species will not be able 
to tolerate future warming, and that their persistence will 
depend on successful migration (Feeley et   al. 2013). Tropical 
lowland forests may experience a net loss of plant species 
richness  –  biotic attrition  –  due to climate regimes shifting 
beyond the tolerance range of many plant species (Colwell 
et   al. 2008). However, rates of biotic attrition may be mark-
edly less than predicted given inaccurate estimates of ther-
mal niches derived from observations or collection records, 
and a higher number of species than previously predicted 
may be able to persist in the hot tropics despite tempera-
tures exceeding their known thermal tolerances (Feeley and 
Silman 2010). 

 In comparison to species-based and coarse scale mod-
els based on a priori functional types (Krinner et   al. 2005, 
Th uiller et   al. 2006, K ü ster et   al. 2011), the use of continu-
ous functional trait data allows for a better understanding 
of plant community response to environmental changes 
(Violle et   al. 2014). Trait data may therefore improve veg-
etation models widely used to assess biosphere – climate 

interactions (Boulangeat et   al. 2012, van Bodegom et   al. 
2012, 2014, Violle et   al. 2014). Because tropical tree spe-
cies richness is high and species exhibit diff erential sensitiv-
ity to changes in climate, it is appropriate to model changes 
in plant community functional composition to assess how 
tropical forest will respond to global change. However, to 
our knowledge a relatively small number of studies have 
attempted to predict trait values from environmental deter-
minants and map their spatial distribution, Swenson and 
Weiser (2010), Dubuis et   al. (2013), van Bodegom et   al. 
(2014), G ö ldel et   al. (2015), Mokany et   al. (2015). Of these 
studies only van Bodegom et   al. (2014) and G ö ldel et   al. 
(2015), respectively conducted at global and regional scale, 
address tropical areas; and only Dubuis et   al. (2013) and 
Mokany et   al. (2015) relate their work to climate change. 
Here, we conduct exploratory analyses of the relationship 
between old-growth rain forest CWM trait values and cli-
matic gradients under current and future conditions, to 
examine potential changes in community functional com-
position. We calculate per-plot CWM trait values using 
abundance data together with values of six functional traits 
for 257 tree and palm species in 127 forest plots distributed 
across a 6166 km 2  landscape in northern Costa Rica. Our 
specifi c objectives are to 1) model the response of CWM 
traits to current climate predictors, 2) use the modeled rela-
tionships to predict and map current and future values of 
CWM traits under a set of 17 climate general circulation 
models within a future climate change scenario, and 3) 
determine potential changes in both individual CWM trait 
values and multi-trait functional space occupied by forest 
plots. Modelled future climates for our study area maintain 
high rainfall and have increased temperatures. We assume 
that future temperatures remain within the thermo-toler-
ance range of the current tree species of the area, and test 
the consequent hypothesis that CWM trait values become 
more acquisitive  –  CWM N and SLA increase, and CWM 
LDMC and WSG decrease.   

 Methods  

 Study area 

 Th e study area covers 6166 km 2  and extends from the high-
lands of the Central mountain range of Costa Rica to the 
lowlands of the San Juan River, which forms the Nicaraguan 
border (Fig. 1). Elevation ranges from near sea level to 2881 m 
a.s.l. Th e study area includes the San Juan-La Selva Biological 
Corridor, an important ecological conservation initiative 
that provides habitat connectivity for many forest species 
along the Mesoamerican biological Corridor (Morse et   al. 
2009, DeClerck et   al. 2010). Gridded data sets for the study 
area (Hijmans et   al. 2005) indicate a mean annual tempera-
ture range from 10.8 ° C to 26.2 ° C, and a mean annual pre-
cipitation range from 2134 mm to 4932 mm. Temperature 
and precipitation vary with elevation and distance from the 
Caribbean coast (Fig. 1). While part of the landscape is farm-
land, more than 40% of its area corresponds to mature and 
secondary forests (Fagan et   al. 2013). Old-growth forests are 
well diff erentiated by species composition and climatic and 
edaphic characteristics into three main vegetation types: two 
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lowland forest types and one foothill forest type at higher 
elevations (Sesnie et   al. 2009).   

 Species and functional trait data 

 Abundance data of canopy tree ( �    30 cm diameter at 
breast height, dbh) and palm ( �    10 cm dbh) species were 
retrieved from a data set of 127 0.25 ha old-growth forest 
plots established by Sesnie et   al. (2009) across the study area 
(40 – 1200 m a.s.l.; Fig. 1). Detailed information on plot 
establishment, measurement of individuals and species iden-
tifi cation can be found in Sesnie et   al. (2009). All tree and 
palm species registered in vegetation plots and identifi ed to 
the level of species or genus (n    �    253) were selected for trait 

measurement. Trait measurements carried out in this study 
complemented an existing tree and palm species trait data-
base collected as part of the Diversus Collaborative Research 
Network (IAI CRN) project and partially published in 
Kattge et   al. (2011). We measured six functional traits sum-
marizing species leaf and wood plant economic spectra, 
and known to covary with climate at the individual plant 
or leaf level (Reich and Oleksyn 2004, Wright et   al. 2004, 
2005, Chave et   al. 2009, Ordo ñ ez et   al. 2009), including 
leaf area (LA, mm 2 ), specifi c leaf area (SLA, mm 2  mg  – 1 ), leaf 
dry matter content (LDMC, mg g  – 1 ), leaf nitrogen (N mg 
g  – 1 ) and phosphorus (P mg g  – 1 ) content, and wood basic 
specifi c gravity (WSG, g cm  – 3 ). We used standardized proto-
cols for trait measurements. Collecting and storing protocols 
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  Figure 1.         Study area location in northern Costa Rica, Central America. Vegetation plots are distributed following the altitudinal gradient 
within or close to the limits of the San Juan La Selva Biological Corridor. Plots are classifi ed into one foothills forest type and two lowland 
forest types following Sesnie et   al. (2009). Eight temperature and precipitation variables were summarized in two principal component 
analysis (PCA) axes of variation (Fig. 2). PCA axis 1 represents a precipitation gradient (with higher values related to higher precipitation 
seasonality and lower values to higher total annual precipitation). Axis 2 represents both a temperature and precipitation gradient (with 
higher values associated with higher seasonal precipitation and higher precipitation during the wettest month, and lower values related to 
higher temperatures across the year and higher temperature seasonality).  
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 Future climate data (Table 1) for the year 2050 (mean 
monthly values for the 2041 – 2060 period) were derived from 
outputs of 17 general circulation models (GCMs) under a 
high radiative forcing scenario of 8.5 W m  – 2  ( ∼ 1370 ppm 
CO 2  eq) by the year 2100 (RCP 8.5; van Vuuren et   al. 2011). 
Th ese data are from the Coupled Model Intercomparison 
Project, Phase 5 (CMIP5), and were used on the Fifth 
Assessment IPCC report (AR5) (IPCC 2013). Coarse GCM 
outputs were downscaled to 30 arc-seconds (aproximately 1 
km 2  in our study area) using the delta method, adding future 
climate anomalies to a high resolution historical climatology 
(WorldClim 1.4, Hijmans et   al. 2005,  <  www.worldclim.
org  > ). GCMs under the selected scenario showed a range in 
mean annual temperature increment of 1.4 – 2.9 ° C over the 
study area. In contrast, precipitation increased or decreased 
depending on the location and climate model selected. 12 of 
the 17 models suggest an increase in mean annual precipita-
tion, in the range 3 – 836 mm. Precipitation of the wettest 
month is also expected to increase (13 of 17 models showed 
positive anomalies), while negative precipitation anomalies 
for the driest month are expected (10 of 17 models show 
positive anomalies). Th e RCP8.5 scenario thus indicates 
higher temperatures and continuing high rainfall, but with 
more marked diff erences between the driest and wettest 
months   

 Data analysis  

 Assessing the response of CWM traits to climate 
 Th e response of individual CWM traits to climate pre-
dictors was assessed through generalized additive mixed 
models (GAMMs) using the  ‘ gamm ’  function in the R pack-
age  ‘ mgcv ’  (Wood 2011). A Gaussian distribution and a 
P-splines smooth term were used. To take into account the 
lack of independence of residuals due to spatial autocorrela-
tion, GAMMs included a spherical correlation function. Th e 
use of GAMMs allowed us to assess nonlinear relationships 
observed between CWM trait values and environmental 
variables and consider the lack of spatial independence in 
the errors through spatial correlation functions. Moreover, 
by using smoothing functions GAMMs are more fl exible 
and result in a much better fi t when non-linear relationships 
predominate. In particular, penalized splines (p-splines) 
smoothing functions use fewer knots which is related with 

from P é rez-Harguindeguy et   al. (2013), rehydration proto-
cols from Garnier et   al. (2001), and measurements protocols 
from P é rez-Harguindeguy et   al. (2013) were followed for 
leaf traits. For WSG we followed Williamson and Wiemann 
(2010). Foliar traits and WSG were respectively measured 
in fi ve and three individuals per species collected within the 
study area. Th e average trait value per species was combined 
with species relative abundance per plot to calculate CWM 
values of each trait per plot. CWM traits were computed 
using the  ‘ FD ’  package (Lalibert é  et   al. 2014) in R (ver. 
2.15.2, R Core Team). 

 We are aware that palms are an a priori functional group 
given their properties of wood anatomy, growth form and 
status as monocotyledons. Palms included in the analy-
sis are four arboreal species ( Euterpe   precatoria ,  Iriartea  
 deltoidea ,  Welfi a   regia ,  Socratea   exorrhiza ) which are key 
elements of the canopy of these (Sesnie et   al. 2009) and 
other Costa Rican old-growth forests (Chain-Guadarrama 
et   al. 2012), contributing to species beta diversity across 
environmental gradients. Given their abundance and 
probable biomass input to ecosystem cycles, and the fact 
that palms share the forest canopy with tree species, they 
are fl oristically and functionally important in these ecosys-
tems and should be considered together with trees when 
calculating CWM trait values. Analyses for the tree com-
munity without palms are presented in Supplementary 
material Appendix 2.   

 Climate data 

 We used eight bioclimatic predictor variables derived 
from interpolated weather station data representing mean 
climate conditions for the 1950 – 2000 period (Hijmans 
et   al. 2005) and downscaled to  ∼ 1 km resolution grids 
( <  www.worldclim.org  > ). All bioclimatic variables are 
derived from monthly temperature and rainfall values. 
We selected annual mean temperature, minimum tem-
perature of the coldest month, maximum temperature of 
the warmest month and standard deviation of tempera-
ture as a measure of temperature seasonality (Table 1). 
Precipitation variables included mean annual precipita-
tion, precipitation of the driest month, precipitation of 
the wettest month and coeffi  cient of variation of precipita-
tion (Table 1). 

  Table 1. Summary statistics of current and future (year 2050) climate in the San Juan La Selva region. Future climate data correspond to 
average values from 17 general circulation models (GCMs) under a high radiative scenario (RCP 8.5).  

Current Future

Variable (units) Mean  �  SE Range Mean  �  SE Range

AnnTemp ( ° C) 24.1    �    0.04 10.8 – 26.2 26.2    �    0.04 12.9 – 28.3
MaxTempWM ( ° C) 30.2    �    0.04 15.7 – 32.8 32.2    �    0.04 17.7 – 34.9
MinTempCM ( ° C) 18.6    �    0.04 5.8 – 20.8 20.7    �    0.04 7.9 – 22.9
TempSD ( ° C) 6.6    �    0.01 4.9 – 8.0 6.6    �    0.01 5.0 – 7.8
AnnPrec (mm) 3607.8    �    6.6 2134 – 4932 3687.3    �    7.0 2215.2 – 5007.4
PrecWettM (mm) 460.1    �    0.69 223 – 648 561.7    �    1.1 296.7 – 817.1
PrecDriesM (mm) 108.6    �    0.55 8 – 188 105.9    �    0.52 7.9 – 182.5
PrecCV (%) 39.4    �    0.12 20 – 80 45.4    �    0.09 30.9 – 82.2

 AnnTemp: annual mean temperature; MaxTempWM: maximum temperature of the warmest month; MinTempCM: minimum temperature of 
the coldest month; TempSD: standard deviation of temperature; AnnPrec: mean annual precipitation; PrecWettM: precipitation of the wettest 
month; PrecDriesM: precipitation of the driest month; PrecCV: coeffi cient of variation of precipitation.   
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plots given their future CWM trait values ( ‘ lost ’  functional 
space), the new functional space occupied by plots given 
their future CWM trait values ( ‘ gained ’  functional space), 
and the space shared by current and future functional space 
( ‘ shared functional space) were calculated. Functions  ‘ kernel.
area ’  and  ‘ kerneloverlap ’  respectively, in the R  ‘ adehabitat ’  
package were used for these calculations of functional space.    

 Data deposition 

 Data available from the Dryad Digital Repository:  <  http://
dx.doi.org/10.5061/dryad.kk914  >  (Chain-Guadarrama 
et   al. 2017).    

 Results  

 Response of CWM traits to current climatic variables 

 Kernel PCA axes, explaining 89.6% of total variance, depict 
the climate variation among plots across two major climatic 
gradients (Fig. 2). PCA Axis 1 represented a precipitation 
gradient, being positively correlated with precipitation sea-
sonality and negatively correlated with mean annual pre-
cipitation and precipitation of the wettest and driest months 
(Supplementary material Appendix 1 Table A1). Along PCA 
Axis 2, vegetation plots were diff erentiated in relation to 
temperature and precipitation variables. Temperature vari-
ables were all negatively correlated with this axis, while pre-
cipitation of the wettest month and coeffi  cient of variation 
of precipitation were weakly positively associated with it 
(Supplementary material Appendix 1 Table A1). Due mainly 

lower overfi tting problems. P-splines are also more reliable at 
the extremes of the data. i.e. they do not suff er from bound-
ary eff ects, in which the spreading of a fi tted curve outside of 
the (physical) domain of the data is generally accompanied 
by bending toward zero. 

 Before performing GAMMs, we used a kernel principal 
components analysis (KPCA), a nonlinear form of PCA, 
to reduce the multidimensional climate variability and to 
extract orthogonal axes of climatic variation for use in the 
GAMM modeling, as well as to avoid problems due to col-
linearity among climatic predictors. Th e  ‘ kpca ’  function in 
R package  ‘ kernlab ’  (Karatzoglou et   al. 2004) was used to 
run KPCA. Universal Transverse Mercator (UTM) latitude 
and longitude coordinates were also added to the models as 
predictors to assess any spatial trends in CWM traits and as 
covariates of climatic predictor variables.   

 Modelling of current and future CWM traits 
 CWM trait values under current climatic constraints cor-
responded to the fi tted values from the GAMMs described 
above. To obtain future CWM trait values, we fi rst applied 
the KPCA fi tted model for current climatic data on future 
climate data from 17 GCMs to obtain axes of future climatic 
variation. We then used the fi tted models of the response of 
CWM traits to current climate to predict trait CWMs under 
future climate conditions for each sample plot under each of 
the 17 GCMs. Using continuous climate grids, we followed 
the same procedure to predict current and future values of 
each CWM trait across the entire landscape. Continuous for-
est cover was assumed even though old-growth forest cover 
is  ∼ 34% of the total study area (Shaver et   al. 2015). CWM 
trait values were assumed to change under future climate 
conditions when the mean future value calculated from all 
17 GCMs projections was below (indicating a decrease) or 
above (increase) the 95% confi dence interval around fi tted 
values from GAMMs. Proportional change was calculated 
both at the plot level and at landscape level, respectively as 
the percentage of total plots or pixels showing signifi cant 
increases or decreases in their CWM trait values. Moreover, 
at the landscape level, the likelihood of change for each 
pixel was estimated as the percentage of scenarios showing 
a signifi cant decrease, increase or no change in CWM traits, 
relative to the 95% confi dence intervals around current fi tted 
CWM traits from GAMMs.   

 Assessing changes in multi-trait community functional 
composition 
 Using a PCA, plots were ordinated in the multivariate space 
of the six CWM trait values predicted from GAMMs under 
current climatic conditions. Th e  ‘ prcomp ’  function in R pack-
age  ‘ stats ’  was used to perform PCA. Using the same fi tted 
PCA, plots were ordinated in the functional space using their 
future average CWM trait values (from 17 assessed GCMs). 
Th e direction and magnitude of temporal changes in plot 
functional composition were assessed as follows. Th rough 
bivariate kernel functions we calculated the probability den-
sity of forest plots within the functional space of the two fi rst 
PCA axes both under current and future climate conditions. 
Th e  ‘ kernelUD ’  function in R package  ‘ adehabitat ’  (Calenge 
2006) was used to perform the two-dimensional kernel den-
sity estimations. Th e functional space no longer occupied by 

  Figure 2.     Results from a kernel principal component analysis to 
ordinate 127 vegetation plots in the multivariate space of eight 
temperature and precipitation variables. AnnTemp: annual mean 
temperature; MinTempCM: minimum temperature of the coldest 
month; MaxTempWM: maximum temperature of the warmest 
month; TempSD: standard deviation of temperature; AnnPrec: 
mean annual precipitation; PrecDriesM: precipitation of the driest 
month; PrecWettM: precipitation of the wettest month; PrecCV: 
coeffi  cient of variation of precipitation.  
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 Prediction of community weighted mean traits under 
current and future climatic constraints 

 Future climate models indicated that CWM SLA, P 
and N will increase in most of the 127 plots (Fig. 4; 
Supplementary material Appendix 1 Table A3). Th e pro-
portion of plots showing no changes in CWM N values 
(54%) was higher than for CWM SLA and P ( �  15% 
in both cases). A decrease in CWM LDMC was observed 
in  �  50% of plots under future climate. Th is decrease 
was highest in plots in the upper range of current val-
ues (Fig. 4). No clear tendency was observed for LA and 
WSG CWMs, with similar proportions of plots showing 
increases and decreases, particularly in the case of WSG 
(Fig. 4).   

to the temperature gradient, foothill forest plots were well 
separated along PCA Axis 2 from most of the lowland forest 
plots. 

 GAMMs assessing the response of individual CWM 
traits to climate gradients explained variance in the range 
between 54.4% (CWM LA) to 18.2% (CWM WSG) 
(Fig. 3; Supplementary material Appendix 1 Table A2 and 
Fig. A1). CWM LA, SLA, LDMC and N were better pre-
dicted (R 2  adj     �    30%) than CWM P and WSG (R 2  adj     �    0.24); 
all relationships were with the precipitation gradient of PCA 
Axis 1 except that for LDMC, which responded to the tem-
perature gradient of Axis 2. Non-linear relationships predom-
inated between PCA axes and CWM traits (Fig. 3). UTM X 
coordinates were a signifi cant factor for LA, SLA, N and P 
(Supplementary material Appendix 1 Table A2).   
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  Figure 4.     Predicted community weighted mean values of six functional traits for 127 forest plots under current and future climate. Th e area 
within dashed lines (95% prediction interval) represents the CWM trait values predicted by generalize additive models under current cli-
mate. Points indicate the average predicted CWM trait values under future climate (2050, RCP 8.5) and vertical black lines  �  standard 
error from 17 climate general circulation models. Future average predicted CWM trait values lying within current-climate prediction 
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Notably, 35% of the future functional space was gained, 
corresponding to combinations of CWM trait values not 
found in the current landscape. Under the future climate sce-
nario, lowland forest plots moved towards higher values on 
PCA Axis 1, due to increasing CWM N, SLA, P and WSG 
(Fig. 5c, d). Th ese lowland forest plots also moved towards 
negative values on PCA Axis 2, due to a smaller decrease in 
CWM LDMC. No clear overall trend was observed for those 
plots within the foothills forest type (Fig. 5b).   

 Landscape patterns of CWM traits along climatic 
gradients 

 Similar areas of increase and decrease in CWM SLA and 
P values were observed across the landscape. Higher certainty 

 Changes in community functional composition 

 Axis 1 and Axis 2 of the PCA using current plot CWM traits 
explained 76 and 13% of total variance, respectively (Fig. 5a; 
Supplementary material Appendix 1 Table A4). CWM SLA, 
P, N and WSG were positively correlated with PCA Axis 1, 
and CWM LA and LDMC negatively correlated with this 
axis (Supplementary material Appendix 1 Table A4). CWM 
LDMC had the strongest trait correlation  –  positive  –  PCA Axis 
2 (Supplementary material Appendix 1 Table A4). Th e mod-
elled increases over time in CWM N, SLA, P values, and the 
decrease in LDMC values (Fig. 4) resulted in the aggregation 
of plots and a consequent 50.4% reduction of the functional 
space (Fig. 5a). Of the total functional space occupied by for-
est plots under current climate, 67% percent was lost, while 
the remaining 33% was shared with future functional space. 
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WSG showed the inverse trends. However, future trends in 
LA, WSG, and specially LDMC showed less convergence 
among climate models, showing small proportions of total 
landscape area with likely probabilities of change (Fig. 6).    

 Discussion 

 Understanding the eff ects of climate change on vegetation 
remains a major challenge in ecology, particularly for 
highly diverse tropical forests. In our study we were able to 
successfully build models of CWM trait response to climatic 

for future predicted values was observed for N, P and SLA 
CWMs with respectively 56, 47 and 46% of total landscape 
area showing likely probability of change. Using the like-
lihood scale recommended by IPCC (Mastrandrea et   al. 
2010) to communicate uncertainty, we considered that a 
change is likely to occur if it is observed in    �    66% of the 
17 GCMs assessed for this RCP8.5 scenario. Large areas of 
decrease in CWM LDMC, indicating a range reduction in 
values of this CWM trait in the landscape, were observed 
towards the northwest region of the landscape. CWM LA 
values respectively increased and decreased in the eastern and 
center portions of the study region, while patterns in CWM 
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  Figure 6.     Predicted CWM traits for (a) current and (b) future climatic conditions (year 2050) under the RCP 8.5 for the San Juan La Selva 
region of northeast Costa Rica. In (b) the mean value from 17 global climatic models is shown. Future areas of increase, decrease or no 
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mean trait values, as well as to a homogenization among for-
est communities in terms of their functional composition or 
identity.  

 Climatic gradients underlying variation in 
community functional composition 

 CWM trait values responded to the current precipitation 
gradient, which as modelled in Worldclim is character-
ized by greater rainfall seasonality to the west and in higher 
altitude areas within the Central Mountain Range. In accor-
dance with precipitation projections previously described for 
Central America (IPCC 2013), there was a large variation 

gradients to predict and spatially project current and future 
community weighted mean values for six functional traits 
related to the stem and leaf economic spectrum of plant spe-
cies. We found that the precipitation gradient in our study 
area was a more important predictor of CWM traits than 
the temperature gradient. Our predictions of current and 
future functional properties of lowland and foothills for-
ests, allowed us to assess the direction and magnitude of the 
potential climate-induced change. We found clear trends 
towards higher values of CWM SLA, P and N, and lower 
values of CWM LDMC, and the reduction of functional 
trait space occupied by 127 old-growth forest plots. Overall, 
our results suggest that a high-emissions climate change 
scenario will lead to forests with more acquisitive weighted 
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higher specifi c leaf area, leaf nitrogen and phosphorous con-
tent and lower leaf dry matter content, or due to phenotypic 
plasticity where  –  assuming that future temperature regimes 
are within the thermal tolerance ranges of these tree species  –  
more acquisitive leaf trait values will be assumed. Currently, 
fast-growing acquisitive species are present in these forests 
(Finegan et   al. 1999) potentially providing the species base 
for these changes. Soil nitrogen is not a limiting resource 
in these tropical forests (Sollins 1998). Because predicting 
future trends of N availability is not straightforward (Chapin 
et   al. 2012, chapter 14) we assume it will not become lim-
iting under the climate change scenario used in our study. 
If forest functional composition becomes more acquisitive, 
then CWM P should also, in principle, increase. However, 
lowland tropical rain forest ecosystem processes are widely 
believed to be P-limited due to substrate factors (Vitousek 
et   al. 2010, Cleveland et   al. 2011) and currently there is no 
plausible climatic mechanism to explain variation in P avail-
ability (Vitousek et   al. 2010). Implications of substrate-deter-
mined phosphorous limitation and its possible interactions 
with nitrogen cycles in lowland tropical forests (Cleveland 
et   al. 2011) on potential changes in CWM P under future 
climates remain to be clarifi ed by further studies. 

 Our study represents the fi rst attempt to model tropical 
forest plant functional composition under future climate, 
and our approach could be applied to analysis of potential 
response of vegetation to climate change in any biome. Our 
study assumes that relationships between functional traits 
and environment at the plant or leaf level scale up to the 
community (Finegan et   al. 2015), and we believe that CWM 
traits can be used to simulate response of vegetation to climate 
change. Using a modelling approach, we report potential 
shifts in community functional composition in old-growth 
Costa Rican forests, where models based on future changes 
in precipitation and temperature gradients suggest future 
lowland communities with softer, more nutrient rich leaves 
than is currently the case. We not only observed a change 
from CWM traits values associated with dominance by more 
conservative species to CWM trait values associated with 
dominance by more acquisitive species, but also a reduction 
of the multi trait functional space currently occupied by old-
growth forests given their CWM trait values. Th is poten-
tial future functional composition may have further eff ects 
on ecosystem functioning and ecosystem services currently 
delivered by these tropical rainforests. Finally, our work 
supports current functional biogeography research (Violle 
et   al. 2014) by describing and explaining regional distribu-
tion of forests forms and functions. Improved knowledge of 
the responses of plant traits to environmental change can 
help bridge the gap between species-based biogeography and 
biogeochemical research (Violle et   al. 2014).   

 Future perspectives 

 In line with our objectives of modelling the response of 
functional properties of tropical forest to climatic variation, 
our models contained only climatic predictors. We did not 
explore edaphic variables known to infl uence functional trait 
values (ter Steege et   al. 2006, Fyllas et   al. 2009, Ordo ñ ez 
et   al. 2009, Dubuis et   al. 2013, Fujita et   al. 2013, Fortunel 

in future precipitation trends among the 17 climate GCMs 
we assessed (RCP 8.5, year 2050). In spite of this, we found 
a clear tendency in future forest functional composition, 
with up to 56% of the study area showing likely changes 
in single CWM traits. Although studies of forest composi-
tion along altitudinal gradients have been used to highlight 
the potential impact of temperature change on biological 
communities (Colwell et   al. 2008, Malhi et   al. 2010, Feeley 
et   al. 2013), our results suggest that future precipitation pat-
terns may have greater infl uence than temperature on the 
functional composition in lowland and premontane forests. 

 Th e 17 updated GCM models (IPCC 2013) used in our 
study pointed to an average temperature increase of 2.1 ° C, 
which results in  �    2% of our study area showing a no-analog 
future climate (i.e. climatic conditions that do not presently 
exist; Fitzpatrick and Hargrove 2009) when assessing values 
of climate PCA Axis 1, and  �    1 % on climate PCA Axis 2. As 
potential future temperatures are largely within the current 
temperature range, we believe biotic attrition (Colwell et   al. 
2008) is unlikely to occur. If this were to happen, modelling 
would have to consider the possibility that the current tree 
species are replaced by radically diff erent plant functional 
types (Dubuis et   al. 2013).   

 Future changes in functional composition of old-
growth forest communities 

 Our results suggest that lowland forest plant communi-
ties will undergo changes in their functional composition 
towards lower values of CWM LDMC and higher values 
of CWM N, SLA, and P. Th ese future CWM trait values 
suggest a shift from forest dominated by more conservative 
tree species with tougher, nutrient poor leaves and slower 
growth, to communities with more acquisitive tree species 
with fast nutrient acquisition and turnover, associated with 
softer, nitrogen-rich leaves and fast growth (Wright et   al. 
2004, 2010, Poorter et   al. 2009, Lavorel 2013, Adler et   al. 
2014). Other studies have showed how tropical forest CWM 
trait values change predictably on a conservative-acquisitive 
spectrum, in relation to disturbance from forestry opera-
tions (Carre ñ o-Rocabado et   al. 2012) and possible historical 
disturbance (van der Sande et   al. 2016). Our study sug-
gests that climate-related changes in forest functional com-
position in our landscape are accompanied by a reduction 
of functional space, a homogenization of forest functional 
composition, and new combination of CWM trait values 
within new functional space. Such changes may have reper-
cussions in ecosystem functioning, since CWM leaf and 
stem traits and plant functional groups infl uence ecosys-
tem processes such as above-ground biomass storage (Ruiz-
Jaen and Potvin 2011, Conti and D í az 2013, Finegan et   al. 
2015), litter decomposition (Cornwell et   al. 2008, Brovkin 
et   al. 2012, Freschet et   al. 2012), and soil N and P pools and 
primary productivity (Hooper and Vitousek 1997, Brovkin 
et   al. 2012). Other studies suggest that  ‘ faster ’  tropical for-
ests dominated by fast-growing acquisitive species associ-
ated with high light use effi  ciency and high productivity are 
expected under a warmer world (Reu et   al. 2011). In our 
study, the modelled shift to  ‘ faster ’  forests could result either 
from an increment in the relative abundance of species with 
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to climate change may be driven by functional diff erences 
between palms and dicot tree species and the relative abun-
dance of these two functional groups. Future work should 
investigate this possibility. 

 In summary, our statistical models of the response of 
CWM functional traits to current and future climate and 
their spatial projections allows to assess potential climate-
induced changes of functional composition of tropical forests 
and to identify areas prone to change in forest function and 
therefore ecosystem service provision. 
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